返回首页

中药功效机理(目前解释植物的春化作用和光周期诱导开花的机理有哪些?)

来源:www.tcmregimen.com  时间:2023-05-13 15:39   点击:299  编辑:admin   手机版

一、目前解释植物的春化作用和光周期诱导开花的机理有哪些?

你hao::春化(vernalization)低温对越冬植物成花的诱导和促进作用。

冬性草本植物(如冬小麦)一般于秋季萌发,经过一段营养生长后度过寒冬,于第二年夏初开花结实。

如果于春季播种,则只长茎、叶而不开花,或开花大大延迟。

这是因为冬性植物需要经历一定时间的低温才能形成花芽。

冬性作物已萌动的种子经过一定时间低温处理,则春播时也可以正常开花结实。

春化作用一词即由此而来。

冬性禾谷类作物(如冬小麦);二年生作物(如甜菜、萝卜、大白菜)以及某些多年生草本植物(如牧草),都有春化现象,这是它们必须等到翌年才能开花的基本原因。

所谓光周期是指一天中,日出至日落的理论日照时数,而不是实际有阳光的时数。

理论日照时数与该地的纬度有关,实际日照时数还受降雨频率及云雾多少的影响。

在北半球,纬度越高,夏季日照越长,而冬季日照越短。

因此,我国北方各地一年中的日照时数在季节间相差较大,在南方各地相差较小。

如哈尔滨冬季每天日照只有8—9小时,夏季可达15.6小时,相差6.6—7.6小时。

而广州冬季的日照时数10—11小时,夏季为13.3小时,相差2.3—3.3小时。

各地生长季节特别是由营养生长向生殖生长转移之前,日照时数长短对各类药用植物的发育是个重要的因素。

植物对光周期的反应通常分为长日照植物、短日照植物、中间型日照植物三类。

长日照植物日照长度必须大于某一临界日长(一般为12—14小时以上),或者说暗期必须短于一定时数才能形成花芽,否则,植株就停留在营养生长阶段。

属于这类的药用植物有红花、当归、莨菪、大葱、大蒜、芥菜、萝卜等。

谢谢

二、中药与中成药有什么区别?

中药是以中国传统医药理论指导采集、炮制、制剂,说明作用机理,指导临床应用的药物,统称为中药。简而言之,中药就是指在中医理论指导下,用于预防、治疗、诊断疾病并具有康复与保健作用的物质。中药主要来源于天然药及其加工品,包括植物药、动物药、矿物药及部分化学、生物制品类药物。

中成药是以中药材为原料,在中医药理论指导下,为了预防及治疗疾病的需要,按规定的处方和制剂工艺将其加工制成一定剂型的中药制品,是经国家药品监督管理部门批准的商品化的一类中药制剂。因此,作为供临床应用的中成药,不但要具备相应的药名、用法用量、规格和特定的质量标准及检验方法,而且要有确切的疗效,明确的适用范围、应用禁忌与注意事项。

所以,中成药可以理解为中药材利用一定的制剂工艺按照规定的处方进行现代加工后的一种中药制剂,传统中成药的剂型有丸,丹,膏,散,现在大多是颗粒剂,胶囊,滴丸等剂型。

三、植物激素的作用机理?

植物激素是植物细胞接受特定环境信号诱导产生的微量有机化合物,低浓度时就能调节植物的生理反应和细胞内的生化过程。

植物激素在植物生长发育的几乎所有过程都起了重要的调控作用,体现在细胞分裂与伸长、组织与器官分化、影响植物发芽与生根、向性(tropism)、性别决定、开花与结实、成熟与衰老、休眠与萌发、叶片和果实脱落、气孔开闭以及离体组织培养等方面。

目前的植物激素包括生长素(auxin)、细胞分裂素(cytokinins)、赤霉素(gibber ellis)、脱落酸(abscisic acid)、乙烯(ethylene)、茉莉酸(Jasmonates)和油菜素内酯(brassinosteroids)等。此外,其他如多胺类( polyamines)、水杨酸( salicylic acid)、开花素( florigen)、光和一氧化氮(NO)等都和植物生长调节有关,但是尚未证实为植物激素。

相对于动物激素,植物激素多为简单的小分子物质,而动物激素多为小的多肽和小分子物质;植物激素不受到中枢调控,而动物激素受中枢调节;植物激素不经由循环系统运输,而动物激素由特殊腺体制造后由血液循环系统运输至特定细胞作用。

植物的生长发育受到外在和内在因素调节,这些因素包括外界环境的变化以及内源的遗传因子和植物激素( plant hormones),而遗传因子的调控多经由植物激素的作用得以实现。植物激素的作用可以是单一的,也可以是复合的,也就是某些激素通过互作(cross talk)或和其他信号途径的相互作用,对植物的生长发育与分化起到调控作用。

生长素的作用

植物激素对于植物生长发育的作用往往不是单一的,也通过与其他激素的共同作用调控植物生长,这在生长素的作用中尤其得到体现。简单归纳生长素的作用为:

①细胞增大——促进细胞伸长造成茎的延伸。

②细胞分裂——促进形成层(cambium)细胞分裂,以及和细胞分裂素(cytokinins)共同作用在组织培养中促进细胞分裂。

③维管组织分化——促进韧皮部(phloem)和木质部(xylem)的分化。

④诱导根的形成——促进扦插苗生根,并在组织培养中促进根的分化。

⑤向性反应——生长素介导枝条和根部对于重力和光所产生的向性反应,在这里必须强调的是内源生长素和外施生长素有着不同的向性反应特征。

⑥顶端优势——由顶端供应的生长素抑制侧芽的生长。

⑦叶片和果实脱落——生长素可以抑制或和乙烯共同作用促进果实脱落。

⑧叶片老化——生长素延缓叶片老化。

⑨果实结实和生长——某些植物的果实可以经由生长素的诱导而结实生长。

⑩果实成熟——延缓果实成熟。

⑪开花——促进凤梨属植物开花。

⑫促进花器官生长

⑬和乙烯共同作用促进雌雄异花植物(dioecious)的雌花分化。

⑭同化物运送(assimilate partitioning)——经由韧皮部运送,将同化物质送至生长素含量较高的部位。

细胞分裂素的作用

依据细胞种类及植物种类不同,细胞分裂素存在着一些不同的作用,可以归纳为:

①促进细胞分化——外源施加的细胞分裂素在有生长素存在的条件下能够促进组织培养的细胞分裂,植物冠瘤(crown gall)的内源细胞分裂素也能够促进细胞分裂。

②组织培养中促进形态分(morphogenesis),包括促使组织培养和冠瘤形成芽和枝条;对于藓苔(moss),细胞分裂素促使芽的形成。

③促进侧芽形成——打破顶端优势。

④增进细胞增大而达到叶片扩展的效果。

⑤对于某些物种能够促进气孔张开。

⑥刺激叶绿素合成而促进白色体(etiplast)发育为叶绿体。

⑦延迟老化。

赤霉素的作用

赤霉素对于植物的作用依植物物种不同而有差异,大致可以归纳为:

①促进细胞分裂及延伸从而使植物茎延伸。

②长日照下促进开花抽墓(bolting)。

③对于某些需要经过层积处理(stratification)或是光照才能够发芽的植物种子有打破种子休眠的作

用。

④禾谷类种子发芽时促进糊粉层a-淀粉酶(a-amylase)的生成以转化胚乳养分供给萌发幼苗使用。

⑤诱导雌雄异株植物的雄花形成。

⑥促进单性果实(parthenocar pic fruit)的形成。

⑦延缓叶片以及芸香科果实的老化。

脱落酸的作用

根据植物对脱落酸的生理反应,脱落酸的作用为:

①刺激气孔关闭(缺水逆境等促进ABA合成)。

②抑制枝条生长但不对根生长产生抑制,甚至能够促进根生长。

③诱导种子合成贮存蛋白。

④抵消由赤霉素诱导的a-淀粉酶生成。

⑤诱导及维持种子和芽的休眠。

⑥受伤反应时诱导更多的蛋白酶抑制物的基因表达。

⑦促进光合产物向发育中的种子运送。

乙烯的作用

乙烯对植物的作用可以分为:

①促进休眠的打破。

②促进枝条和根的分化。

③促进侧生根的分化。

④增进叶片和果实离层形成。

⑤促进凤梨科植物开花。

⑥诱导雌雄异花植物的雌花形成。

⑦促进开花。

⑧促成叶片和花的老化。

⑨增进果实成熟。

参考文献

陈晓亚,汤章城. 植物生理与分子生物学(第三版),高等教育出版社,2007

Hua J, Meyerowitz E M. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell, 94: 261-27

Bishop g J, Koncz C. 2002. Brassinosteroids and Plant Steroid Hormone Signaling. Plant cell: S97-S110

Weijers D, Jurgens G. 2004. Funneling auxin action: specificity in signal transduction. Curr Opin Plant Biol, 7: 687-693

Wang ZY, He jX. 2004. Brassinosteroid signal transduction-choices of signals and receptors. Trends Plant Sciense, 9: 91-96

Leyser O. 2005. Auxin Distribution and Plant Pattern Formation: How Many Angels Can Dance on the point of Pin. Cell, 121: 819-822

Jones AM, Im K H, Savka M A, et al. 1998. Auxin-Dependent Cell Expansion Mediated by Overexpressed Auxin-Binding Protein 1. Science, 282:1114-1117

顶一下
(0)
0%
踩一下
(0)
0%